Maths @ CHARUSAT
Pages
Wednesday, 30 December 2015
Sunday, 23 August 2015
Monday, 20 July 2015
Thursday, 2 July 2015
Contact Me
To,
Students/Parents/Guardians:
For queries fill following form
Thanks for your questions. I will reply to E-mail Add provided by you.
Tuesday, 30 June 2015
Saturday, 6 June 2015
MATLAB Code and Algorithms
Dear Student, Here you can find MATLAB code of some numerical techniques. You can modify the code if you find error in execution!!
BISECTION Algorithm:
>> x = [-3:0.1:3];
>> y = fnroot(x);
>> plot(x,y);
>> grid on;
>> ylabel('x^3 - x -1');
>> xlabel('x');
>> title('Graph of f(x) cuts x-axis');
>> ylabel('f(x)=x^3 - x -1');
>> x = [-3:0.1:3];
>> y = fnroot(x);
>> plot(x,y);
>> grid on;
>> ylabel('x^3 - x -1');
>> xlabel('x');
>> title('Graph of f(x) cuts x-axis');
>> ylabel('f(x)=x^3 - x -1');
function y = fnroot(x)
y = x.^3-x-1;
end
function [ c,err ] = bisectf(f,a,b,E)
fa = feval(f,a);
fb = feval(f,b);
for i=1 : 30
c(i) =(a+b)/2;
fc = feval(f,c(i));
err(i)= abs(a-b);
if abs(fc) < E
break
else if fa * fc < 0
b = c(i);
fb = fc;
else
a = c(i);
fa = fc;
end
end
end
end
>> [c ,err] = bisectf('fnroot',0,2,0.005);
>> [c' err']
ans =
1.0000 2.0000
1.5000 1.0000
1.2500 0.5000
1.3750 0.2500
1.3125 0.1250
1.3438 0.0625
1.3281 0.0313
1.3203 0.0156
1.3242 0.0078
NEWTON RAPHSON Algorithm
y = x.^3-x-1;
end
function y = df(x)
y = 3*x*x-1;
end
function [ n,c ] = ntr(f,df,a,E)
fa = feval(f,a);
dfa = feval(df,a);
for i=1 : 30
c(i) = a - fa/dfa;
fa = feval(f,c(i));
n(i) = i;
if abs(fa) < E
break
else if abs(a - c(i))< E
break
else
dfa = feval(df,c(i));
a = c(i);
end
end
end
end
>> [n,root]=ntr('fnroot','df',1,0.0005);
>> [n' root']
ans =
1.0000 1.5000
2.0000 1.3478
3.0000 1.3252
4.0000 1.3247
NEWTON'S FORWARD DIFFERENCE Interpolation Algorithm (File Name Forward_D.m)
x = input('Equidistant values of x:');
y = input('Values of y for each x:');
n = length(x);
d = zeros(n);
for i=1:n
d(i,1)=y(i);
end
for j=2:n
for i=1:n-(j-1)
d(i,j)=d(i+1,j-1)-d(i,j-1);
end
end
D = [x',d];
fprintf('The Forward Difference Table\n');
disp(D);
%disp(d);
a = input('Enter value of x to find y:');
h = x(2)-x(1);
product =1;
sum = d(1,1);
p = (a-x(1))/h;
for j=2:n
product = product * (p-(j-2))/(j-1);
sum = sum + product*d(1,j);
end
>> Forward_D
Equidistant values of x:[0 1 2 3]
Values of y for each x:[1 0 1 10]
The Forward Difference Table
0 1 -1 2 6
1 0 1 8 0
2 1 9 0 0
3 10 0 0 0
Enter value of x to find y:4
The Interpolating value y(4) is 33.000000
Solution to Linear System of Equation AX = b
Gauss Jacobi Algorithm
>> A = [10 -2 -1 -1;-2 10 -1 -1;-1 -1 10 -2;-1 -1 -2 10];
>> b = [3;15;27;-9];
>> A
A =
10 -2 -1 -1
-2 10 -1 -1
-1 -1 10 -2
-1 -1 -2 10
>> b
b =
3
15
27
-9
>>
function x = jacobinew( A,b,M,E)
n = length(b);
fprintf('The Solution to sytem of equation AX = b is \n');
for i=1:n
if i==1
B(i,:)=[A(i,2),A(i,3:n)]*(-1/A(i,i));
else if i==n
B(i,:)=[A(i,1:n-1)]*(-1/A(i,i));
else
B(i,:)=[A(i,1:i-1),A(i,i+1:n)]*(-1/A(i,i));
end
end
end
for i=1:n
C(i)=b(i)*(1/A(i,i));
end
C = C';
x = zeros(n,1);
u = zeros(n,1);
y = zeros(n);
temp = 0;
for j=2:M
for i=1:n
if i==1
y(i,j)= B(i,:)*u(2:n)+C(i);
x(i)=B(i,:)*u(2:n)+C(i);
else if i==n
y(i,j)=B(i,:)*u(1:n-1)+C(i);
x(i)=B(i,:)*u(1:n-1)+C(i);
else
w = [u(1:i-1);u(i+1:n)];
y(i,j)=B(i,:)*w+C(i);
x(i)=B(i,:)*w+C(i);
end
end
end
u = x;
disp(x')
for i=1:n
if abs(y(i,j)-y(i,j-1)) > E
temp = temp + 1;
end
end
if temp ==0
break;
end
temp = 0;
end
end
The Solution to sytem of equation AX = b is
0.3000 1.5000 2.7000 -0.9000
0.7800 1.7400 2.7000 -0.1800
0.9000 1.9080 2.9160 -0.1080
0.9624 1.9608 2.9592 -0.0360
0.9845 1.9848 2.9851 -0.0158
0.9939 1.9938 2.9938 -0.0060
0.9975 1.9975 2.9976 -0.0025
0.9990 1.9990 2.9990 -0.0010
0.9996 1.9996 2.9996 -0.0004
>> x = jacobinew(A,b,15,0.0001);
The Solution to sytem of equation AX = b is
0.3000 1.5000 2.7000 -0.9000
0.7800 1.7400 2.7000 -0.1800
0.9000 1.9080 2.9160 -0.1080
0.9624 1.9608 2.9592 -0.0360
0.9845 1.9848 2.9851 -0.0158
0.9939 1.9938 2.9938 -0.0060
0.9975 1.9975 2.9976 -0.0025
0.9990 1.9990 2.9990 -0.0010
0.9996 1.9996 2.9996 -0.0004
0.9998 1.9998 2.9998 -0.0002
0.9999 1.9999 2.9999 -0.0001
>> x = jacobinew(A,b,15,0.00001);
The Solution to sytem of equation AX = b is
0.3000 1.5000 2.7000 -0.9000
0.7800 1.7400 2.7000 -0.1800
0.9000 1.9080 2.9160 -0.1080
0.9624 1.9608 2.9592 -0.0360
0.9845 1.9848 2.9851 -0.0158
0.9939 1.9938 2.9938 -0.0060
0.9975 1.9975 2.9976 -0.0025
0.9990 1.9990 2.9990 -0.0010
0.9996 1.9996 2.9996 -0.0004
0.9998 1.9998 2.9998 -0.0002
0.9999 1.9999 2.9999 -0.0001
1.0000 2.0000 3.0000 -0.0000
1.0000 2.0000 3.0000 -0.0000
1.0000 2.0000 3.0000 -0.0000
>>
Gauss Seidel Algorithm
function x = gseidel(A,b,M,E)
n = length(b);
fprintf('The Solution to system of equation AX = b is \n');
for i=1:n
if i==1
B(i,:)=[A(i,2:n)]*(-1/A(i,i));
else if i==n
B(i,:)=[A(i,1:n-1)]*(-1/A(i,i));
else
B(i,:)=[A(i,1:i-1),A(i,i+1:n)]*(-1/A(i,i));
end
end
end
for i=1:n
C(i)=b(i)/A(i,i);
end
C = C';
x =zeros(n,1);
y = zeros(n);
temp = 0;
for j= 2:M
for i=1:n
if i==1
x(i) = B(i,:)*x(2:n)+C(i);
else if i==n
x(i)=B(i,:)*x(1:n-1)+C(i);
else
x(i)=B(i,:)*[x(1:i-1);x(i+1:n)]+C(i);
end
end
y(i,j) = x(i);
end
for i=1:n
if abs(y(i,j)-y(i,j-1)) > E
temp = temp + 1;
end
end
if temp ==0
break;
end
disp(x');
temp = 0;
end
end
>> x = gseidel(A,b,15,0.001);
The Solution to system of equation AX = b is
0.3000 1.5600 2.8860 -0.1368
0.8869 1.9523 2.9566 -0.0248
0.9836 1.9899 2.9924 -0.0042
0.9968 1.9982 2.9987 -0.0008
0.9994 1.9997 2.9998 -0.0001
>> x = gseidel(A,b,15,0.00001);
The Solution to system of equation AX = b is
0.3000 1.5600 2.8860 -0.1368
0.8869 1.9523 2.9566 -0.0248
0.9836 1.9899 2.9924 -0.0042
0.9968 1.9982 2.9987 -0.0008
0.9994 1.9997 2.9998 -0.0001
0.9999 1.9999 3.0000 -0.0000
1.0000 2.0000 3.0000 -0.0000
1.0000 2.0000 3.0000 -0.0000
>>
Numerical Integration Algorithm
function t = f(x)
t = (1+x).^(-1);
end
function I = simpson13(y,n,h)
sum13 = y(1)+y(n+1);
for i=2:n
if rem(i,2)==0
sum13 = sum13 + 4*y(i);
else
sum13 = sum13 + 2*y(i);
end
I = (h/3)*sum13;
end
function I = Simpson38(y,n,h)
sum38 = y(1)+y(n+1);
for i=2:n
if rem(i-1,3)==0
sum38 = sum38 + 2*y(i);
else
sum38 = sum38 + 3*y(i);
end
end
I = (3*h/8)*sum38;
end
function I = trapz(y,n,h)
sumtr = y(1)+y(n+1);
for i=2:n
sumtr = sumtr + 2*y(i);
end
I = (h/2)*sumtr;
end
function Itg = NumInteg(f)
a = input('Enter lower limit of integration:');
b = input('Enter Upper limit of integration:');
n = input('Number of Intervals:');
h = (b-a)/n;
x = a:h:b;
y = feval(f,x);
fprintf('Table values of (x,y) is\n');
[x' y']
fprintf('The Function is f(x) = 1/(1+x)\n');
if mod(n,2)== 0
fprintf('Simpson 1/3 Rule:\n');
Itg = simpson13(y,n,h);
elseif mod(n,3) == 0
fprintf('Simpson 3/8 Rule:\n');
Itg = Simpson38(y,n,h);
else
fprintf('Trapezoidal Rule:\n');
Itg = trapz(y,n,h);
end
>> I = NumInteg('f')
Enter lower limit of integration:0
Enter Upper limit of integration:1
Number of Intervals:4
Table values of (x,y) is
ans =
0 1.0000
0.2500 0.8000
0.5000 0.6667
0.7500 0.5714
1.0000 0.5000
The Function is f(x) = 1/(1+x)
Simpson 1/3 Rule:
I =
0.6933
>> I = NumInteg('f')
Enter lower limit of integration:0
Enter Upper limit of integration:1
Number of Intervals:6
Table values of (x,y) is
ans =
0 1.0000
0.1667 0.8571
0.3333 0.7500
0.5000 0.6667
0.6667 0.6000
0.8333 0.5455
1.0000 0.5000
The Function is f(x) = 1/(1+x)
Simpson 1/3 Rule:
I =
0.6932
>> I = NumInteg('f')
Enter lower limit of integration:0
Enter Upper limit of integration:1
Number of Intervals:7
Table values of (x,y) is
ans =
0 1.0000
0.1429 0.8750
0.2857 0.7778
0.4286 0.7000
0.5714 0.6364
0.7143 0.5833
0.8571 0.5385
1.0000 0.5000
The Function is f(x) = 1/(1+x)
Trapezoidal Rule:
I =
0.6944
>>
Dear Student, you can download here Simple Algorithms of some numerical techniques that you know. You can use them to write a simple C/C++ program or MATLAB Program.
Friday, 5 June 2015
Basic Mathematics
Dear Student, you can find here the discussions on topics of Elementary Mathematics. This notes are constructed for students of CHARUSAT studying in courses: First Semester B Pharm, First Semester B. Sc. as per prescribed syllabus and teaching scheme.
I have referred several text book to construct these notes. In many places I have compiled the material available in textbooks that discuss the theories (without proof!) and concepts described by author/s. Interested students can read in more details about the topic/s from the Book mentioned here. Also students can download the PDF document of topics which I have not posted here. At the end I am collecting the exercise problems,some Quiz questions from these resources for practice purpose.
Send your comments and suggestions for better improvement in these posts if any!!!
Thank You all
Few Books that are used:
- "Naive Set Theory": By Paul R Halmos, Van Nostrand Reinhold Comp
- "Sets, Functions, and Logic An Introduction to Abstract Mathematics": By Keith Devlin, Chapman & Hall/CRC
- "The Mathematics of Matrices" A First Book of Matrix Theory and Linear Algebra, by Philip J. Davis,John Wiley and Sons, Inc. Second Edition
- "Theory and Problems of Set Theory and Related Topics" by Seymour Lipschutz, Schaum's Outline Series,Second Edition
- "Calculus and Analytical Geometry" by Thomas G B and R. L. Finney, Addison Wesley $9^{th}$ Edition
- "Advanced Engineering Mathematics" by Erwin Kreyszig, John Wiley and Sons, India $8^{th}$ Edition
- Numbers and Set Theory Introduction
- Relations and Functions Introduction only (Contains Some Quiz Questions)
- Introduction to Matrices Some Basics
- Introduction to Determinants (Upto Order 3 only)
Solution to the Questions will be displayed at the end of topic discussion.
Subscribe to:
Posts (Atom)